
CMSC 22610
Winter 2011

Implementation
of

Computer Languages I

Handout 2
March 28, 2011

MinML Syntax

1 The MinML grammar

The concrete syntax of MinML is specified by the grammar given in Figures ?? and ??.

There are four classes of identifiers: vid for value identifiers (variables), cid for data constructor
identifiers, tyv for type variables, and tyc for type constructors (including type constants). The
identifier classes vid and tyv consist of alphanumeric identifiers starting with a lower-case letter,
while cid and tyc range over alphanumeric identifier starting with an upper-case letter.

As written, this grammar is ambiguous. To make this grammar unambiguous, the precedence of
operators must be specified. The precedence of the binary operators are (from weakest to strongest):

||
&&

== <> < <= > >=
@
+ -

* / %

All binary operators are left associative except “@” (string concatenation) which is right associative.
The next highest precedence is function application, which associates to the left. Here are some
examples:

a + b * c + d ≡ (a + (b * c)) + d
f a @ b @ " ≡ (f a) @ (b @ "")
hd l x y ≡ ((hd l) x) y

The lexical structure of MinML is defined in the ML-Lex specification file minml.lex, and
the Yacc-style grammar is defined in minml.grm.

Prog
::= (TopDecl ;)∗ Exp

TopDecl
::= type tyc TypeParamsopt = Type
| datatype tyc TypeParamsopt = ConsDecl (| ConsDecl)∗

| ValueDecl

TypeParams
::= tyv
| (tyv (, tyv)∗)

Type
::= Type -> Type
| AtomicType (* AtomicType)∗

AtomicType
::= tyv
| tyc ((Type (, Type)∗))opt

| (Type)

ConsDecl
::= cid ((Type))opt

ValueDecl
::= val TuplePat = Exp
| fun FunDef (and FunDef)∗

FunDef
::= vid TuplePat = Exp

Figure 1: The concrete syntax of MinML (A)

2

Const
::= num
| str
| cid

Pat
::= Const
| cid TuplePat
| TuplePat

TuplePat
::= AtomicPat
| (AtomicPat (, AtomicPat)∗)

AtomicPat
::= vid
| _

Match
::= Pat => Exp

Exp
::= vid
| Const
| Exp || Exp
| Exp && Exp
| Exp == Exp
| Exp <> Exp
| Exp < Exp
| Exp <= Exp
| Exp > Exp
| Exp >= Exp
| Exp @ Exp
| Exp + Exp
| Exp - Exp
| Exp * Exp
| Exp / Exp
| Exp % Exp
| ˜ Exp
| Exp Exp
| (Exp (, Exp)∗)
| (Exp (; Exp)∗)
| if Exp then Exp else Exp
| let ValueDecl+ in Exp (; Exp)∗ end
| case Exp of Match (| Match)∗ end
| fn vid => Exp

Figure 2: The concrete syntax of MinML (B)

3

