
ASDL Reference Manual
Version 3.0

John Reppy
jhr@cs.chicago.edu

Revised: April 2019

ii

Copyright c©2019. Fellowship of SML/NJ. All rights reserved.

Contents

1 Introduction 1
1.1 Changes From Version 2.0 . 2

2 ASDL Syntax 3
2.1 Lexical Tokens . 3
2.2 File Syntax . 3
2.3 Module Syntax . 4
2.4 Type Definitions . 5

2.4.1 Alias Types . 6
2.4.2 Type expressions . 6
2.4.3 ASDL Primitive Types . 6
2.4.4 Product Types . 7
2.4.5 Sum Types . 7

2.5 Primitive Modules . 9
2.6 View Syntax . 10

2.6.1 Basic View Syntax . 10
2.6.2 View Entry Derived Forms . 11

3 Views 13
3.1 Views and View Entities . 13
3.2 Interpretation of View Entry Values . 13
3.3 Overriding the Default Names . 14
3.4 Adding User Code . 14
3.5 Choosing a Different Representation . 15
3.6 Other Properties . 18

4 Code Interface 19
4.1 Translation to SML . 19

4.1.1 CM support . 21
4.2 Translation to C++ . 21

4.2.1 Memory management . 21
4.3 The Rosetta Stone for Sum Types . 21

iii

iv CONTENTS

5 Pickles 25
5.1 Binary Pickle Format . 25

5.1.1 Primitive types . 25
5.1.2 Product types . 26
5.1.3 Enumeration types . 26
5.1.4 Sum types . 26
5.1.5 Sequence types . 26
5.1.6 Option types . 27
5.1.7 Alias types . 27
5.1.8 User-defined primitive types . 27

5.2 S-expression Format . 27
5.2.1 Primitive types . 27
5.2.2 Product types . 27
5.2.3 Sum types . 28
5.2.4 Sequence types . 28
5.2.5 Option types . 28
5.2.6 Alias types . 28
5.2.7 User-defined primitive types . 28

6 Usage 29

7 Document history 31

Bibliography 33

Chapter 1

Introduction

The Abstract Syntax Description Lanuguage (ASDL) is a language designed to describe the tree-
like data structures used in compilers. Its original purpose was to provide a method for compiler
components written in different languages to interoperate [1], but it has also been used to support
communicating information between separate runs of a compiler. ASDL makes it fairly easy for
applications written in a variety of programming languages to communicate complex recursive data
structures.

asdlgen is a tool that takes ASDL descriptions and produces implementations of those de-
scriptions in a variety of languages. ASDL and asdlgen together provide the following advan-
tages

• Concise descriptions of important data structures.

• Automatic generation of data structure implementations for asdlgen-supported languages.

• Automatic generation of functions to read and write the data structures to disk in a machine
and language independent way.

ASDL descriptions describe the tree-like data structures such as abstract syntax trees (ASTs)
and compiler intermediate representations (IRs). Tools such as asdlgen automatically produce the
equivalent data structure definitions for the supported languages. asdlgen also produces functions
for each language that read and write the data structures to and from a platform and language
independent sequence of bytes. The sequence of bytes is called a pickle.

ASDL was originally developed in the 1990’s by Daniel Wang as part of the National Compiler
Infrastructure project at Princeton University. That ASDL implementation has not kept up with
the significant changes in many of its target languages (e.g., C++, HASKELL, JAVA, etc.), so it was
time for a rewrite.1 Version 3.0 of ASDL and asdlgen is a complete reimplementation of the
system, with the primary purpose of supporting the SML/NJ compiler. As such, it currently only
supports generating picklers in SML and modern C++, although other languages may be added as
time permits.

1 Version 2.0 of ASDL is still available from https://sourceforge.net/projects/asdl and the 2.0
version of the manual (converted to LATEX) is included in the documentation of this system.

https://sourceforge.net/projects/asdl

2 CHAPTER 1. INTRODUCTION

1.1 Changes From Version 2.0

The following is a list of the major changes from the 2.0 version of ASDL and asdlgen:

• The primitive types were extended and changed. The bool type was added, the type name
of arbitrary precision integers was changed to integer, and the types int and uint were
added to represent small integers.

• Various changed were made to the binary encoding of pickles.

• Currently only two target languages are supported: SML and C++.

• The generated C++ code targets the 2011 standard and uses the C++ STL (e.g., std::vector<>
for ASDL sequences).

• Data can be pickled/unpickled to/from memory, as well as files. This change affects the
requirements for implementing primitive modules.

• Alias-type definitions were added to the ASDL syntax.

• Include directives were added to support splitting specifications into multiple files (and the
sharing of common specifications).

Chapter 2

ASDL Syntax

This section describes the syntax of the input language to asdlgen. The syntax is described using
EBNF notation. Literal terminals are typeset in ‘bold’ and enclosed in single quotes. Optional
terms are enclosed in square brackets and terms that are repeated zero or more times are enclosed
in braces. Each section describes a fragment of the syntax and its meaning.

2.1 Lexical Tokens

The lexical conventions for ASDL are given in Figure 2.1. ASDL is a case-sensitive language and,
furthermore, classifies identifiers into initial-lower-case (〈lc-id〉) and initial-upper-case (〈uc-id〉)
identifiers. Type identifiers are initial-lower-case, while constructor identifiers are initial-upper-
case. Module and field identifiers can be either upper or lower-case.

Comments begin with ‘--’ and continue to the end of the line.
Verbatim text is denoted by 〈text〉 and can be specified in one of two ways. Either by an initial

‘:’ followed by a sequence of 〈text-character〉s that continues to the end of the line or by a ‘%%’
terminated by a ‘%%’ at the beginning of a line by itself. Text included using the ‘‘:’ notation will
have trailing and leading whitespace removed.

ASDL has the following keywords:

‘alias’ ‘attributes’ ‘import’ ‘include’ ‘module’ ‘primitive’ ‘view’

Note that it is allowed to use a keyword as an identifier wherever a 〈lc-id〉 is permitted.

2.2 File Syntax

An ASDL file consists of one or more 〈definition〉s possibly preceded by ‘include’ directives. A
definition specifies either a module (see Section 2.3), primitive module (see Section 2.5), or view
(see Section 2.6).

Include directives allow one to split a large ASDL specification into multiple files, while al-
lowing asdlgen to check references from one module to another. asdlgen will parse included
files, but will not generate code for the definitions in included files. Also, included files will only be
parsed once.

3

4 CHAPTER 2. ASDL SYNTAX

〈upper〉 ::= ‘A’ | ... | ‘Z’

〈lower〉 ::= ‘a’ | ... | ‘z’

〈alpha〉 ::= ‘_’ | 〈upper〉 | 〈lower〉

〈alpha-num〉 ::= 〈alpha〉 | ‘0’ | ... | ‘9’

〈lc-id〉 ::= 〈lower〉 { 〈alpha-num〉 }

〈uc-id〉 ::= 〈upper〉 { 〈alpha-num〉 }

〈id〉 ::= 〈lc-id〉 | 〈uc-id〉

〈typ-id〉 ::= 〈lc-id〉

〈con-id〉 ::= 〈uc-id〉

〈comment〉 ::= ‘--’ { 〈text-character〉 } 〈end-of-line〉

〈text〉 ::= ‘:’ { 〈text-character〉 } 〈end-of-line〉
| ‘%%’ { 〈text-character〉 | 〈end-of-line〉 } 〈end-of-line〉 ‘%%’

Figure 2.1: Lexical rules for ASDL terminals

〈file〉 ::= { ‘include’ 〈text〉 } 〈definition〉 { 〈definition〉 }

〈definition〉 ::= 〈module〉
| 〈primitive-module〉
| 〈view〉

Figure 2.2: ASDL file syntax

2.3 Module Syntax

Figure 2.3 gives the syntax for modules. An ASDL module declaration consists of the keyword
‘module’ followed by an identifier, an optional set of imported modules, and a sequence of type
definitions enclosed in braces.

For example the following example declares modules A, B, and C. B imports types from A. C
imports types from both A and B. Imports cannot be recursive; for example, it is an error for B to
import C, since C imports B.

module A { ... }
module B (import A) { ... }
module C (import A

import B) { ... }

To refer to a type imported from another module the type must always be qualified by the
module name from which it is imported. The following declares two different types called “t.” One

2.4. TYPE DEFINITIONS 5

〈module〉 ::= ‘module’ 〈id〉 [〈imports〉] ‘{’ { 〈type-definition〉 } ‘}’

〈imports〉 ::= ‘(’ { ‘import’ 〈id〉 [‘alias’ 〈id〉] } ‘)’

Figure 2.3: ASDL module syntax

〈type-definition〉 ::= 〈typ-id〉 ‘=’ 〈type〉

〈type〉 ::= 〈alias-type〉 | 〈sum-type〉 | 〈product-type〉

〈alias-type〉 ::= 〈typ-exp〉

〈product-type〉 ::= 〈fields〉

〈sum-type〉 ::= 〈constructor〉 { ‘|’ 〈constructor〉 } [‘attributes’ 〈fields〉]

〈constructor〉 ::= 〈con-id〉 [〈fields〉]

〈fields〉 ::= ‘(’ { 〈field〉 ‘,’ } 〈field〉 ‘)’

〈field〉 ::= 〈typ-exp〉 [〈id〉]

〈typ-exp〉 ::= [〈id〉 ‘.’] 〈typ-id〉 [‘?’ | ‘*’ | ‘!’]

Figure 2.4: ASDL type definition syntax

in module A and one in module B. The type “t” in module B defines a type “t” that recursively
mentions itself and also references the type “t” imported from module A.

module A { t = ... }
module B (import A) { t = T(A.t, t) | N ... }

2.4 Type Definitions

The syntax of type definitions is given in Figure 2.4. A type defintion begins with a type identifier,
which is the name of the type. The name must be unique within the module, but the order of
definitions is unimportant. When translating type definitions from a module they are placed in what
would be considered a module, package, or name-space of the same name. If the output language
does not support such features and only has one global name space the module name is used to
prefix all the globally exported identifiers.

Type definitions are either alias types, which bind a name to a type expression; product types,
which are simple record definitions; or sum type, which represent a discriminated union of possible
values. Unlike sum types, product types cannot form recursive type definitions, but they can contain
recursively declared sum types.

6 CHAPTER 2. ASDL SYNTAX

2.4.1 Alias Types

Alias types are the simplest form of type definition. They provide a way to give a name to a type or
type expression, similar to SML’s type and C++’s typedef constructs.

2.4.2 Type expressions

A type expression (〈typ-exp〉) consists of a possibly qualified type name followed by an optional
type operator. If the specified type is an ASDL primitive type or is defined in the current module,
then its name is not qualified; all other types defined outside the current module must be qualified
by their module name (or module alias).

The type operators are:

• option (‘?’), which specifies either zero or one value of the specified type.

• sequence (‘*’), which specifies a sequence of zero or more values of the specified type, or

• shared (‘!’), which specifies that a value is shared across multiple points in the data structure
(i.e., the structure has a DAG shape instead of just a tree).

Note that while at most one type operator is allowed in a type expression, one can use alias types
to combine two or more operators. For example, a sequence of optional integers could be defined
by:

int_opt = integer?
int_opt_seq = int_opt*

2.4.3 ASDL Primitive Types

There are seven pre-defined primitive types in ASDL, which are available without qualification:

bool describes Boolean values.

int describes signed-integer values that are representable in 30 bits (i.e., in the range−229 to 229 − 1).

uint describes unsigned-integer values that representable in 30 bits (i.e., in the range 0 to 230−1).

integer describes arbitrary-precision signed-integer values.

natural describes arbitrary-precision unsigned-integer values.

string describes length encoded strings of 8-bit characters.

identifier describes strings with fast equality testing analogous to Lisp symbols.

2.4. TYPE DEFINITIONS 7

2.4.4 Product Types

Product types are defined by a non-empty sequence of fields separated by commas enclosed in
parenthesis. A field consists of a type expression followed by an optional label. The fields of a
product or sum type must either all be labeled or unlabeled. We use record to refer to products of
labeled fields and tuple to products of unlabeled fields. Labels aid in the readability of descriptions
and are used by asdlgen to name the fields of records and classes for languages.

For example, the declaration

pair_of_ints = (int, int)

defines the tuple type pair_of_ints that consists of two integers, whereas the declaration

size = (int width, int height)

defines the record type size that consists of two labeled fields: width and height. Note that
ASDL requires that if any field in a product type has a label, then all of them must have labels.

For the SML target, product types without labels are translated to tuples, while those with labels
are translated to records.

2.4.5 Sum Types

Sum types are the most useful types in ASDL. They provide concise notation used to describe a type
that is the tagged union of a finite set of other types. Sum types consists of a series of constructors
separated by a vertical bar. Each constructor consist of a constructor identifier followed by an
optional product type.

Constructor names must be unique within the module in which they are declared. Constructors
can be viewed as functions who take some number of arguments of arbitrary type and create a value
belonging to the sum type in which they are declared. For example

module M {
sexpr = Int(int)

| String(string)
| Symbol(identifier)
| Cons(sexpr, sexpr)
| Nil

}

declares that values of type sexpr can either be constructed from an int using the Int constructor
or a string from a String constructor, an identifier using the Symbol constructor, from two
other sexpr using the Cons constructor, or from no arguments using the Nil constructor. Notice
that the Cons constructor recursively refers to the sexpr type. ASDL allows sum types to be
mutually recursive. Recursion, however, is limited to sum types defined within the same module.

Sum Types as Enumerations

Sum types that consist completely of nullary constructors are often treated specially and translated
into static constants of a enumerated value in languages that support them. For example, the follow-
ing ASDL specification:

8 CHAPTER 2. ASDL SYNTAX

module Op {
op = PLUS | MINUS | TIMES | DIVIDE

}

Is translated into the following C++ code:

namespace M {
enum class op {

PLUS = 1, MINUS, TIMES, DIVIDE
};

}

Attribute Fields

A sum-type definition may optionally be followed by a list of attribute fields, which provide a
concise way to specify fields that are common to all of the constructors of a sum type. For example,
the definition

module M {
pos = (string file, int linenum, int charpos)
sexpr = Int(int)

| String(string)
| Symbol(identifier)
| Cons(sexpr, sexpr)
| Nil
attribute(pos)

}

adds a field of type pos to all the constructors in sexpr. One can think of an attribute annotation
as syntactic sugar for just including the extra fields at the beginning of each constructor’s fields. For
example, the above definition can be viewed as syntactic sugar for

module M {
pos = (string file, int linenum, int charpos)
sexpr = Int(pos, int)

| String(pos, string)
| Symbol(pos, identifier)
| Cons(pos, sexpr, sexpr)
| Nil(pos)

}

Note that this interpretation implies that attribute fields are labeled if, and only if, all of the con-
structor fields are labeled.

Attribute fields are treated specially when translating to some targets. For example in C++ code,
the attribute field is defined in the base class for the sum type.

2.5. PRIMITIVE MODULES 9

〈primitive-module〉 ::= ‘primitive’ ‘module’ 〈id〉 ‘{’ { 〈id〉 } ‘}’

Figure 2.5: ASDL primitive module syntax

2.5 Primitive Modules

Primitive modules (see Figure 2.5) provide a way to introduce abstract types that are defined outside
of ASDL and which have their own pickling and unpickling code. For example, we might want to
include GUIDs (16-byte globally-unique IDs) in our pickles. We can do so by first defining a
primitive module Prim:

primitive module Prim { guid }

Then, depending on the target language, we define supporting code to read and write guids from the
byte stream. In SML, we would define two modules:

1. structure Prim that defines the representation of the guid type.

2. structure PrimPickle that defines functions for pickling/unpickling a GUID using an
imperative stream API.

The SML implementation of these modules could be written as follows:

structure Prim : sig
type guid

end = struct
type guid = GUID.guid

end

structure PrimPickle : sig

val read_guid : (unit -> Word8.word) -> unit -> Prim.guid
val write_guid : (Word8.word -> unit) -> Prim.guid -> unit

end = struct

val guidSize = 16
fun read_guid getByte () =

GUID.fromBytes(Word8Vector.tabulate(guidSize, fn _ => getByte()))
fun write_guid putByte guid = let

Word8Vector.app putByte (GUID.toBytes guid)

end

(assuming that the GUID module implements the application’s representation of GUIDs).
For C++, a primitive module requires a corresponding header file that declares the primitive

types and instances of the overloaded << and >> operators on the primitive types. These declarations
should all be in a namespace with the type name of the primitive module. For example, the module
from above would require the provision of a Prim.hxx header file that contained something like
the following code:

10 CHAPTER 2. ASDL SYNTAX

〈view〉 ::= ‘view’ 〈id〉 ‘{’ { 〈view-entry〉 } ‘}’

〈view-entry〉 ::= 〈view-entities〉 ‘<=’ 〈view-properties〉
| ‘<=’ 〈id〉 ‘{’ { 〈view-entity〉 〈text〉 } ‘}’

〈view-entities〉 ::= 〈view-entity〉
| ‘{’ { 〈view-entity〉 } ‘}’

〈view-entity〉 ::= ‘<file>’
| ‘module’ 〈id〉
| 〈id〉 ‘.’ 〈typ-id〉 [‘.’ ‘*’]
| 〈id〉 ‘.’ 〈typ-id〉 ‘.’ 〈con-id〉

〈view-properties〉 ::= 〈id〉 〈text〉
| ‘{’ { 〈id〉 〈text〉 } ‘}’

Figure 2.6: ASDL view syntax

#include <iostream>
#include "guid.hxx"

namespace Prim {

typedef GUID::guid guid;

std::istream &operator>> (std::istream &is, guid &g);
std::ostream &operator<< (std::ostream &os, guid const &g);

}

(assuming that the guid.hxx header defines the application’s representation of GUIDs).

2.6 View Syntax

A view defines how an ASDL specification is translated to a target. Each of the supported targets
(e.g., SML or C++) has a default view, but it is possible to customize the translation using 〈view〉
definitions. The syntax of view declarations is given in Figure 2.6. This section covers the syntax
of views, but leaves the semantics to Chapter 3.

2.6.1 Basic View Syntax

Views are named and consist of series of entries. In its basic form, a view entry consists of a
〈view-entity〉, which specifies a file, module, type, or constructor entity, and a view property, which
is a name-value pair that is associated with the entity.

〈view-entry〉 ::= 〈view-entity〉 ‘<=’ 〈id〉 〈text〉

2.6. VIEW SYNTAX 11

The meaning of an entry is to associate the specified view property with the specified view entity.
There can be multiple views with the same name. The entries of two views with the same name

are merged and consist of the union of the entries in both. It is an error, for two views of the same
name to assign different values to the same property of an entity.

2.6.2 View Entry Derived Forms

To make it easier to specify view entries, ASDL generalizes the basic syntax to remove some of
the redundancy of the basic syntax. First, it is possible to specify multiple view entities on the left-
hand-side of the ‘<=’ symbol. Likewise, it is possible to specify multiple view properties on the
right-hand-side of the ‘<=’ symbol.

It is also possible to assign different values to different entities for a fixed property using the
syntax.

〈view-entry〉 ::= ‘<=’ 〈id〉 ‘{’ { 〈view-entity〉 〈text〉 } ‘}’

Here the property name is given first, followed by a sequence of view-entity-value pairs.
Lastly, ASDL allows a ‘.*’ suffix to be added to sum-type entities. This suffix means that the

entity specifies the set of all of the constructors of the type.

12 CHAPTER 2. ASDL SYNTAX

Chapter 3

Views

Views provide a general mechanism to customize the output of asdlgen. Views allow description
writers to annotate modules, types, and constructors with directives or properties that are inter-
preted by asdlgen. Currently asdlgen properties that allow for the following mechanisms are
supported:

• Inclusion of arbitrary user code in the resulting output.

• Automatic coercion of specific types into more efficient user defined representations.

• Addition of extra user defined attributes and initialization code.

• Control over how the names of types, constructors, and modules names are mapped into the
output language to resolve style issues and name space conflicts.

• Control over the tag values for sum types.

• Addition of documentation that describes the meaning of types constructors and modules.

3.1 Views and View Entities

asdlgen currently recognizes two views: cxx and sml.

3.2 Interpretation of View Entry Values

See the chapter on Input Syntax for details on view the syntax and some basic view terminology.
The view syntax associates an arbitrary string whose interpretation depends on the property it is
assigned too. Currently there is a small set of standard interpretations.

integer An integral number in decimal notation.

string A raw ASCII string.

boolean A boolean value (either “true” or “false”).

13

14 CHAPTER 3. VIEWS

qualified identifier A possibly qualified identifier (e.g., “M.t” or “t”). Qualified identifiers are
language independent identifiers that are translated to the appropriate output language in a
uniform way. For example M.t would appear as M::t in C++ and as M.t in SML.

3.3 Overriding the Default Names

The view mechanism provides a fair amount of flexibility for overriding the default names used for
modules and functions in the generated code.

file pickler name identifier sml / Module
Specifies the name to give to the target module that implements file pickling. Does not apply
to the C++ target, since memory and file pickling is combined.

memory pickler name identifier sml / Module
Specifies the name to give to the target module that implements memory pickling. Does not
apply to the C++ target, since memory and file pickling is combined.

name identifier All / All
All entities have this property. The value is interpreted as an identifier that overrides the name
for the file, module, type, or data constructor in the output code.

pickler name identifier c++,sml / Module
Specifies the name to give to the target module that implements both file and memory pick-
ling. For the SML target, this affects the name of the pickler signature, but not the pickler
structures, since different modules are generated for memory and file pickling.

sexp pickle name identifier sml / Module
Specifies the name to give to the target module that implements S-Expression pickling.

3.4 Adding User Code

It is useful to be able to add arbitrary user code to the modules produced by asdlgen. Modules
have six properties that can be set to allow the addition of user-code to the generated modules.1

interface_prologue text c++,sml / Module
Include text verbatim after the introduction of the base environment, but before any type
defined in the module interface.

interface_epilogue text c++,sml / Module
Include text verbatim after all types defined in the module interface have been defined.

implementation_prologue text c++,sml / Module
Include text verbatim after the introduction of the base environment, but before any other
implementation code is defined.

1 In the case of a target language like SML, where multiple modules are generated, the code is added to the base
module that contains the generated type definitions.

3.5. CHOOSING A DIFFERENT REPRESENTATION 15

implementation_epilogue text c++,sml / Module
Include text verbatim after all definitions defined in the module implementation.

is_library bool c++,sml / Module
Default value is false. If true assume all types can be used as lists or options and generate any
needed code, rather then

suppress bool c++,sml / Module
Default value is false. Do not produce any code for this module, assume it’s implementation
is written by hand. It’s often a good idea to first generate code and then set this flag, so that the
generated code can be used as stubs for the user implementation. generating list and option
code on demand. Useful for generating stubs.

private code text c++ / Type,Con
Add the text to the class generated for the type or constructor with private scope.

protected code text c++ / Type,Con
Add the text to the class generated for the type or constructor with protected scope.

public code text c++ / Type,Con
Add the text to the class generated for the type or constructor with public scope.

The precise meaning of interface and implementation for the different target languages is as
follows:

C++ The interface is the .hxx file and the implementation is the .cxx file.

SML The interface is the generated signature and the implementation is the structure.

3.5 Choosing a Different Representation

The ASDL module

module IntMap {
int_map = (int size, entries map)
entries = (entry* entries)
entry = (int key, int value)
map_pair = (int_map, int_map)

}

is one possible abstract description of a mapping from integers to integers. Such an implementation
is not particularly efficient; we might prefer to use binary-search trees for more efficient lookups.
We can easily describe such a data structure in ASDL

module IntMap {
int_map = (size int, map tree)
tree = Node(int key, int value, tree left, tree right)

| Empty
map_pair = (int_map, int_map)

}

16 CHAPTER 3. VIEWS

but this description exposes implementation details and prevents the use of existing library code.
Furthermore, changing the representation to use a hash table would require that all clients be
changed.

asdlgen supports four properties – natural_type, natural_type_con, wrapper, and
unwrapper – to allow clients to use a specialized representation for ASDL types.2

natural_type identifier c++,sml / Type
The type to use in place of the original type in all the resulting code. Supported by all output
languages.

natural_type_con identifier c++,sml / Type
A unary type constructor to apply to the old type to get a new type to use in all the resulting
code; e.g., ref in SMLto make a type mutable. Support for C++ templates will be added in
the near future.

wrapper identifier c++,sml / Type
Specifies the name of the function to convert the pickle type to the natural type when reading
the pickle. The interface code for this function will be generated, but the implementation must
be provided using the implementation_prologue or implementation_epilogue prop-
erties.

unwrapper identifier c++,sml / Type
Specifies the name of the function to convert the natural type to the pickle type when writing
the pickle. The interface code for this function will be generated, but the implementation must
be provided using the implementation_prologue or implementation_epilogue prop-
erties.

When using natural_type and natural_type_con, the automatically generated type defi-
nitions for the original type still remain, but all other references to the original type in constructors,
picklers, and other type definitions that referred to it are replaced with the new type. The origi-
nal definition must remain to support pickling of the type. Pickling is achieved by appropriately
coercing the new type to the old type and vice versa with functions specified by wrapper and
unwrapper properties.

For example, we could use the SML/NJ Library’s IntRedBlackMap structure to implement
the int_map type as follows:

view sml {
module IntMap <= {

interface_prologue : type int_map = int IntRedBlackMap.map
implementation_prologue

%%
structure IntMap = IntRedBlackMap
type int_map = int IntMap.map

%%
implementation_epilogue

%%

2 Primitive modules are another way to solve this problem, but they require all of the pickling and unpickling code be
provided by the user.

3.5. CHOOSING A DIFFERENT REPRESENTATION 17

fun wrap_int_map ({map={entries}, ...} : int_map_pkl) =
List.foldl

(fn ({key, value}, imap) => IntMap.insert(imap, key, value))
IntMap.empty

entries
fun unwrap_int_map (imap : int_map) = {

size = IntMap.numItems imap,
map = {entries = IntMap.foldri

(fn (k, v, entries) => {key = k, value = v} :: entries)
[]

imap}
}

%%
}
IntMap.int_map <= {

name : int_map_pkl
natural_type : int_map
wrapper : wrap_int_map
unwrapper : unwrap_int_map

}
}

In this view, we rename int_map to int_map_pkl add a type definition for int_map to both the
interface (signature) and implementation (structure). We also add definitions of the wrapper and
unwrapper functions. The generated code is

structure IntMap : sig
type int_map = int IntRedBlackMap.map
type entry = {key : int, value : int}
type entries = {entries : entry list}
type int_map_pkl = {size : int, map : entries}
type map_pair = int_map * int_map
val wrap_int_map : int_map_pkl -> int_map
val unwrap_int_map : int_map -> int_map_pkl

end = struct
structure IntMap = IntRedBlackMap
type int_map = int IntMap.map
type entry = {key : int, value : int}
type entries = {entries : entry list}
type int_map_pkl = {size : int, map : entries}
type map_pair = int_map * int_map
fun wrap_int_map ({map={entries}, ...} : int_map_pkl) = ...
fun unwrap_int_map (imap : int_map) = ...

end

Note that we had to define the int_map type in the prologue so that the definition of the int_map
type was well-defined.

18 CHAPTER 3. VIEWS

3.6 Other Properties

doc_string text /
All entities have this property. Its value is interpreted as a string. Currently only the --doc
command recognizes the property. It includes the property value in the HTML documentation
produced for the module.

user_attribute identifier /
Property of types only. The value is interpreted as a qualified identifier. Add a field called
client_data as an attribute to the type. The value is the qualified identifier that represents
an arbitrary user type of the field. The client_data field is ignored by the pickling code and
does not appear in constructors. This property is currently only recognized when outputting
C++.

user_init identifier /
Property of types only. The value is interpreted as a qualified identifier. Call the function
specified by the value before returning the data structure created by a constructor function.
This property is currently only recognized when outputting C.

base_class identifier / Type
Property of types only. The value is interpreted as a qualified identifier. The name of the class
from which all classes generated for that type should inherit from. This property is recognized
only when outputting C++.

reader identifier / Type
Property of types only. The value is interpreted as a qualified identifier. Replace the body of
the read pickle function for this type with a call to a function with the proper arguments.

writer identifier / T
ype Property of types only. The value is interpreted as a qualified identifier. Replace the body
of the writer pickle function for this type with a call to a function with the proper arguments.

enum_value integer c++ / Con
Property of constructors only. Use this integer value as the internal tag value for the construc-
tor. The external pickle tag remains unchanged.

Chapter 4

Code Interface

In this section, we describe the default translation of ASDL definitions to target languages and
describe some of the runtime assumptions that users need to be aware of when using the generated
code.

4.1 Translation to SML

The translation from an ASDL specification to SML code is straightforward. ASDL modules map
to SML structures, ASDL product types map to either tuples or records, and ASDL sum types map
the SML datatypes. Table 4.1 summarizes this translation. If an ASDL identifier conflicts with an
SML keyword or pervasive identifier, then the translation adds a trailing prime character (’) to the
identifier.

For an ASDL module M , we generate an SML signature and several SML structures:

structure M = struct ... end
signature M_PICKLE = sig ... end
structure MMemoryPickle : M_PICKLE = struct ... end
structure MFilePickle : M_PICKLE = struct ... end
structure MSExpPickle : M_PICKLE = struct ... end (* optional *)

where M structure contains the type definitions for the ASDL specification, MMemoryPickle

structure implements functions to convert between the types and byte vectors, and theMFilePickle

structure implements functions to read and write pickles from binary files. The optionalMSExpPickle

structure implements functions to read and write textual pickles in S-Expression syntax.1 This mod-
ule is generated when the “--sexp” option is specified (see see Section 5.2 for more details).

For an ASDL source file f.asdl, asdlgen will produce four SML source files.

f.sml
contains type definition structures (e.g., structure M)

f-pickle.sig
contains memory-pickler signatures (e.g., signature M_PICKLE)

1 Currently, only output of S-Expression pickles is implemented.

19

20 CHAPTER 4. CODE INTERFACE

Table 4.1: Translation of ASDL types to SML

ASDL type SML type
Named types (T) (T̂)
bool bool

int int

uint word

integer IntInf.int

string string

identifier Atom.atom

t t

M.t M.t

Type expressions (τ) (τ̂)
T T̂

T? T̂ option

T* T̂ list

Product types (ρ) (ρ̂)
(τ1, . . ., τn) τ̂1 * · · · * τ̂n

(τ1 f1, . . ., τn fn) {f1 : τ̂1, . . ., fn : τ̂n}

Type definitions
t = ρ type t = ρ̂

t = C1 | · · · | Cn datatype t = C1 | · · · | Cn

t = C1(ρ1) | · · · | Cn(ρn) datatype t = C1 of ρ̂1 | · · · | Cn of ρ̂n

f-memory-pickle.sml
contains memory-pickler structures (e.g., structure MMemoryPickle)

f-file-pickle.sml
contains file-pickler structures (e.g., structure MFilePickle)

f-sexp-pickle.sml
contains the optional S-Expression pickler structures (e.g., structure MSExpPickle).
This file is only generated when the “--sexp” command-line option is specified.

4.2. TRANSLATION TO C++ 21

4.1.1 CM support

The SML/NJ Compilation Manager (CM) knows about ASDL files (as of version 110.84). If one
specifies “foo.asdl” in the file list of a .cm file, CM will infer the generation of the five SML
files as described above.

4.2 Translation to C++

The translation of an ASDL specification to C++ is more complicated than for SML. For each
ASDL module, we define a corresponding C++ namespace.

4.2.1 Memory management

4.3 The Rosetta Stone for Sum Types

For languages that support algebraic data types, asdlgen maps sum types directly to the lan-
guage’s mechanism (e.g., datatype declarations in SML). For class-based object-oriented lan-
guages, like C++, asdlgen maps sum types to abstract base classes and the constructors to indi-
vidual subclasses. The previous example written in SML would be

structure M =
struct

datatype sexpr
= Int of (int)
| String of (string)
| Symbol of (identifier)
| Cons of (sexpr * sexpr)
| Nil

end

and in C++ it translates to

namespace M {

struct sexpr {
enum tag {

_Int, _String, _Symbol, _Cons, _Nil
};
tag _tag;
sexpr (tag t) : _tag(t) { }
virtual ˜sexpr ();

};

struct Int : public sexpr {
int _v1;
Int (int v) : sexpr(sexpr::_Int), _v1(v) { }
˜Int () { }

};

22 CHAPTER 4. CODE INTERFACE

Table 4.2: Translation of ASDL types to C++

ASDL type C++ type
Named types (T) (T̂)
bool bool

int int

uint unsigned int

integer asdl::integer

string std::string

identifier asdl::identifier

t

{
t if t is an enum type
t* otherwise

M.t M::t

Type expressions (τ) (τ̂)
T T̂

T? asdl::option< T̂ >

T* std::vector< T̂ >

Product types (ρ) (ρ̂)
(τ1, . . ., τn) τ̂1 _v1; . . . τ̂n _vn

(τ1 f1, . . ., τn fn) τ̂1 _f1; . . . τ̂n _fn

Type definitions
t = ρ struct t { ρ̂ };

t = C1 | · · · | Cn class enum t { C1, . . ., Cn };

t = C1(ρ1) | · · · | Cn(ρn) class t { · · · };
class C1 : public t {

private: ρ̂1
· · ·

};
· · ·
class Cn : public t {
private: ρ̂n
· · ·

};

4.3. THE ROSETTA STONE FOR SUM TYPES 23

struct String : public sexpr {
std::string _v1;
String (const char *v) : sexpr(sexpr::_String), _v1(v) { }
String (std::string const &v) : sexpr(sexpr::_String), _v1(v) { }
˜String () { }

};

struct Symbol : public sexpr { ... };

struct Cons : public sexpr { ... };

struct Nil : public sexpr { ... };

}

24 CHAPTER 4. CODE INTERFACE

Chapter 5

Pickles

One of the most important features of asdlgen is that it automatically produces functions that
can read and write the data structures it generates to and from a platform and language independent
external representation. This process of converting data structures in memory into a sequence of
bytes on the disk is referred to as pickling. Since it is possible to generate data structures and
pickling code for any of the supported languages from a single ASDL specification, asdlgen
provides an easy and efficient way to share complex data structures among these languages.

The ASDL pickle format requires that both the reader and writer of the pickler agree on the
type of the pickle. Other than constructor tags for sum types, there is no explicit type information in
the pickle. In the case of an error the behavior is undefined. It is also important that the pickling/un-
pickling to/from files, that the files be opened in binary mode to prevent line feed translations from
corrupting the pickle.

5.1 Binary Pickle Format

Since ASDL data structures have a tree-like form, they can be represented linearly with a simple
prefix encoding. This encoding is used by both the memory and file picklers.

5.1.1 Primitive types

bool
Boolean values are represented by 0 (false) or 1 (true) and are encoded in one byte.

int
The int type provides 30-bits of signed precision encoded in one to four bytes. The top two
bits of the first byte (bit 6–7) specify the number of additional bytes in the encoding and bit 5
specifies the sign of the number. Thus values in the range -32 to 31 can be encoded in one
byte, -8192 to 8191 in two bytes, etc. A negative number n is represented as the positive
number −(n+ 1).

uint
The uint type provides 30-bits of unsigned precision encoded in one to four bytes. As with
the int type, the top two bits of the first byte specify the number of additional bytes in the

25

26 CHAPTER 5. PICKLES

encoding. Thus values in the range 0 to 63 can be encoded in one byte, 0 to 16383 unsigned
in two bytes, etc.

integer
The ASDL integer type is represented with a variable-length, big-endian, signed-magnitude
encoding. The high bit of each byte indicates if the byte is the last byte of the encoding. The
bit 6 of the most significant byte is used to determine the sign of the value. Thus, numbers in
the range of -63 to 63 are encoded in one byte. Numbers outside of this range require an extra
byte for every seven bits of precision required.

string
Strings are represented with a length-header that describe how many more 8-bit bytes follow
for the string and then the data for the string in bytes. The length-header is encoded as a uint
value, thus strings are limited to 1,073,741,823 characters.

identifier
Identifiers are represented as if they were strings.

5.1.2 Product types

The fields of a product type are encoded sequentially (left to right) without any initial tag.

5.1.3 Enumeration types

Enumeration types are represented by a tag value, that is either one (tag8) or two (tag16) bytes,
depending on the number of constructors in the type. Tag values are assigned in order of constructor
definition starting from one (the value zero is used to encode empty option values).

If the enumeration type has only a single constructor, then it is implicit in the encoding (i.e., no
space is used to represent it).

5.1.4 Sum types

Non-enumeration sum types begin with a unique tag to identify the constructor followed by the
fields of the constructor. The tag is encoded as either one (tag8) or two (tag16) bytes, depending
on the number of constructors in the type. Tag values are assigned in order of constructor definition
starting from one (the value zero is used to encode empty option values). Fields are packed left to
right based of the order in the definition. If there are any attribute values associated with the type,
they are packed left to right after the tag but before other constructor fields.

If the sum type has a single constructor with fields, then it is encoded without a tag (i.e., like a
product type).

5.1.5 Sequence types

Sequence types are represented with an integer length-header followed by that many values of
that type. The length-header is encoded as a uint value, thus sequences are limited to at most
1,073,741,823 items.

5.2. S-EXPRESSION FORMAT 27

5.1.6 Option types

The encoding of optional values depends on the base type. For sum types with more than one
constructor, the special tag value of zero is used to denote an empty value and non-zero values are
interpreted as the constructor’s tag. For any other base type, there is an initial byte that is either one
or zero. A zero indicates that the value is empty and no more data follows. A one indicates that the
next value is the value of the optional value.

5.1.7 Alias types

Alias types use the encoding of their definition.

5.1.8 User-defined primitive types

User-defined primitive types are pickled/unpickled by user-provided functions (see Section 2.5).

5.2 S-expression Format

It is also possible to generate a text-based representation of pickles in S-Expression syntax. Prim-
itive values are represented as literals, enumerations are represented as quoted symbols, and struc-
tured values are represented with a parenthesized expression of the form

(op v′1 · · · v′n)

where op is an identifier that defines the structure of the value and the v′1, . . . , v
′
n are the encodings

of the sub-values.

5.2.1 Primitive types

bool
Boolean values are mapped to the literals #t and #f.

numbers
Values of the ASDL numeric types (int, uint, and integer) are represented by decimal
literals.

string and identifier
These values are represented by string literals.

5.2.2 Product types

A product value (f1, . . ., fn) is encoded as the S-expression (n-tuple f ′1 · · · f ′n), where the
f ′i are the encoded fields of the value. Unlabeled fields are directly represented by their value,
whereas a field with label l and value v is encoded as (l v′), where v′ is the encoding of the field’s
value.

28 CHAPTER 5. PICKLES

5.2.3 Sum types

Nullary constructors are mapped to quoted symbols, while non-nullary constructors are mapped to
an S-expression with the constructor name as the operator and the

5.2.4 Sequence types

A sequence of values v1, . . . , vn is encoded as (* v′1 · · · v′n), where the v′i are the encoded fields
of the sequence.

5.2.5 Option types

An empty option value is represented as (?), while a non-empty option value with contents v is
represented as (? v′), where v′ is the encoding of the contents.

5.2.6 Alias types

Alias types use the encoding of their definition.

5.2.7 User-defined primitive types

User-defined primitive types are not yet supported in S-Expression form.

Chapter 6

Usage

Synopsis

asdlgen command [options] files ...

Where command is one of

help Print information about the asdlgen tool to the standard output.
version Print the version of of asdlgen to the standard output.
c++ or cxx Generate C++
sml Generate Standard ML
check Check correctness of inputs, but do not generate output

Description

asdlgen reads the set of files, which contain ASDL module and view declarations.

Common Options

Options common to all the commands include

-n
Do not write any output files. Instead write the list of files that would have been written to
standard out.

--output-directory=dir or -d dir
Specify the output directory to place the generated files. By default the output will be placed
in the same directory as the input file from which it was produced.

--gen=names
Specifies the components to generate. The value names is a list of comma-separated names
from the following list:

• “types” – generate the type definitions from the ASDL specification.

29

30 CHAPTER 6. USAGE

• “memory” – generate the memory pickler

• “file” – generate the file pickler

• “sexp” – generate the S-Expression pickler (SML only).

The default is “types,memory,file.” Alternatively, names can be “none,” which means
that no output is generated. Specifying “none” is different than using the “-n” option,
because it does not cause the list of files to be printed.

Note: currently the “--gen” option only affects the SML command; it is ignored by the
C++ command.

Command-specific Options

All the commands that produce source code as output offer a different command option to select the
default base environment. The base environment is the set of the initial definitions available to the
code. It defines the set of primitive types and functions used by the generated code. For example
using the option --base-include=my-base.hxx when generating C++ code will insert the
directive

#include "my-base.hxx"

in the appropriate place so the resulting code will use the definitions found in my-base.hxx rather
than the default set of primitive types. Unless there is a need to globally redefine the primitive types
changing the base environment should be avoided. The actual option names vary depending on the
output language.

See Chapter 4 for a more detailed description about the interfaces to the default set of primitive
types and functions.

Options for C++

--base-include=file
Specify the name of the C++header file that defines the primitive ASDL types and functions.
The default value is asdl/asdl.hxx.

Options for Standard ML

--cm=file
Generate a CM file for the pickler; this will define a CM library. Note that if the ASDL spec-
ification includes primitive modules, these will be included in the list of exported structures,
but the supporting source files will have to be added to the CM file by hand.

--mlb=file
Generate an MLB file for the pickler. Note that if the ASDL specification includes primitive
modules, these will be included in the list of exported structures, but the supporting source
files will have to be added to the MLB file by hand.

Chapter 7

Document history

ASDL and asdlgen (originally named asdlGen) were developed as part of the National Com-
piler Infrastructure Project at Princeton University in the late 1990’s [1]. The original version of
this manual was written by Dan Wang as part of that project. As part of reimplementing and mod-
ernizing ASDL, John Reppy converted the original manual to LATEX and did some light editing
(this version of the old manual can be found in the doc/manual-2.0 directory). The original
implementation of asdlGen can be found at http://asdl.sourceforge.net.

Here is a history of changes to ASDL, asdlgen, and this manual. The changes are indexed
by SML/NJ release numbers.

SML/NJ 110.86

The interface to the file and memory picklers was unified: the “encode” was changed to
“write,” “decode” was changed to “read” in the memory pickler, and the read operations
were made imperative. Also added support for writing to an S-Expression textual format and
improved the documentation.

Changed the “--pickler” option to “--gen” and made it take a list of targets.

SML/NJ 110.84

First release of ASDL 3.0; see Section 1.1 for differences from previous version.

31

http://asdl.sourceforge.net

32 CHAPTER 7. DOCUMENT HISTORY

Bibliography

[1] Daniel C. Wang, Andrew W. Appel, Jeff L. Korn, and Christopher S. Serra. The zephyr abstract
syntax description language. In Proceedings of the Conference on Domain-Specific Languages
on Conference on Domain-Specific Languages (DSL), 1997, Berkeley, CA, USA, October 1997.
USENIX Association.

33

	Introduction
	Changes From Version 2.0

	ASDL Syntax
	Lexical Tokens
	File Syntax
	Module Syntax
	Type Definitions
	Alias Types
	Type expressions
	ASDL Primitive Types
	Product Types
	Sum Types

	Primitive Modules
	View Syntax
	Basic View Syntax
	View Entry Derived Forms

	Views
	Views and View Entities
	Interpretation of View Entry Values
	Overriding the Default Names
	Adding User Code
	Choosing a Different Representation
	Other Properties

	Code Interface
	Translation to SML
	CM support

	Translation to C++
	Memory management

	The Rosetta Stone for Sum Types

	Pickles
	Binary Pickle Format
	Primitive types
	Product types
	Enumeration types
	Sum types
	Sequence types
	Option types
	Alias types
	User-defined primitive types

	S-expression Format
	Primitive types
	Product types
	Sum types
	Sequence types
	Option types
	Alias types
	User-defined primitive types

	Usage
	Document history
	Bibliography

